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W e study a generic minimization problem with separable nonconvex piecewise linear 
costs, showing that the linear programming (LP) relaxation of three textbook mixed- 

integer programming formulations each approximates the cost function by its lower convex 

envelope. We also show a relationship between this result and classical Lagrangian duality 
theory. 
(Piecewise Linear; Integer Programming; Linear Relaxation; Lagrangian Relaxation) 

1. Introduction 
Optimization problems with piecewise linear costs 
arise in many application domains, including trans- 

portation, telecommunications, and production plan- 
ning. Specific applications include variants of the 
minimum cost network flow problem with noncon- 
vex piecewise linear costs (Aghezzaf and Wolsey 
1994, Balakrishnan and Graves 1989, Chan et al. 1997, 
Cominetti and Ortega 1997, Croxton 1999, Croxton 
et al. 2002b), such as the network loading prob- 
lem (Bienstock and Giinliik 1996, Gabrel et al. 1999, 
Giinliik 1999, Magnanti et al. 1995), the facility loca- 
tion problem with staircase costs (Holmberg 1994, 

Holmberg and Ling 1997), and the merge-in-transit 
problem (Croxton et al. 2002a). Each of these stud- 
ies introduces integer variables to model the costs, 

though the choice of the basic formulation varies 

and includes three textbook models-the so-called 
incremental, multiple choice, and convex combination 
models. The objective of this note is to show that the 
linear programming (LP) relaxations of these mixed- 

integer programming (MIP) models are equivalent 
and that they all approximate the cost function by 
its lower convex envelope. To the best of our knowl- 

edge, although this result might appear to be intu- 
itive, no one has formally established it. We also dis- 
cuss the relationship between this result and classical 

Lagrangian duality theory. 
The general problem, P, is to minimize the separa- 

ble sum of piecewise linear functions, subject to lin- 
ear constraints, which we write as min{g(x): Ax > b, 
0 < x < u}, with g(x) = yj gj(xj), b and u as vectors, 
and A as a matrix. Because the formulations we con- 
sider model each function 

gj(xj) 
separately, for nota- 

tional simplicity we will drop the subscript j. We then 
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Figure 1 Notation for Each Segment 
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let x denote a single variable, called the load, and 
focus on a single piecewise linear function g(x). This 

simplification is justified by the fact that the lower 
convex envelope of a separable sum of functions 

(defined over a bounded polyhedron) equals the sum 
of the lower convex envelopes of these functions (Falk 
1969). 

The function g(x) need not be continuous; it can 
have positive or negative jumps, though we do 
assume that the function is lower semicontinuous, 
that is, g(x) < liminfx,, g(x'). Without loss of gene- 
rality, we also assume, through a simple translation 
of the costs if necessary, that g(0) = 0. Each piecewise 
linear segment s E 1, 2, ..., S} of the function g(x) has 
a variable cost, cs (the slope), a fixed cost, fs (the cost- 

intercept), and upper and lower bounds, bs-1 and bs 

(the breakpoints), on the load corresponding to that 

segment. We assume bO = 0. Figure 1 illustrates the 
notation. 

Using this notation, in ?2 we present three well- 
known valid MIP models for the problem. In ?3, we 
show that the LP relaxations of the three formula- 
tions are equivalent and that they each approximate 
the cost function by its lower convex envelope. In ?4, 
we discuss the relationship between this result and 
classical Lagrangian duality theory. 

2. Three Models for Piecewise 
Linear Costs 

Incremental Model 
Dantzig (1960) and Vajda (1964) both attribute 
the incremental model to a paper by Manne and 

Markowitz (1957). As reported in early textbooks, 

including those by Dantzig (1963) and Hadley (1964), 
the incremental model introduces a segment load 

variable, z", for each segment, defined as the load 
on the segment s, giving a total load x = E~zs. 

Feasibility requires that the value on segment s + 1 
be zero unless segment s is "full," that is, zs+1 > 0 

only if zs = bs - bs-1. To account for this requirement, 
the incremental model introduces binary variables, yS, 
defined by the condition that ys = 1 if z' > 0, and ys = 0 
otherwise. Defining fs = (fs + csbs-1) - (fs-1 + cs-lbs-1) 
as the gap in the cost at the breakpoint between 

segment s - 1 and segment s, we can express prob- 
lem P as a MIP formulation by writing the objective 
function as g(x) = Es CSzS+ fSys, with the additional 
constraints: 

x = zs, (1) 
s 

(bs - bs-1)ys+l zs < (bs - bs-1)y, (2) 

ys E {0, 1}. (3) 

In this formulation, yS+l = 0 for the rightmost piece- 
wise linear segment S of the cost function. 

Multiple Choice Model 
The multiple choice model, as used by Balakrishnan 
and Graves (1989) among others, employs an alterna- 
tive definition of the segment variables with zs equal- 
ing the total load of x if that value lies in segment s. 

Therefore, if the total load equals X and X lies in 

segment ?, then zS = iX and z" = 0 for all segments 
s #:. As in the incremental formulation, ys = 1 if 

zs > 0, and y -= 0 otherwise, but in this formulation 
at most one y' will equal one. With this notation, 
the multiple choice model has the objective function 

g(x) = Es cszs + f YS and the constraints: 

x = ZS, (4) 
s 

bs-lys 
< zs < bsy, (5) 

s 
y < 1, (6) 

s 

ys 5 {0, 1}. (7) 

MANAGEMENT SCIENCE/Vol. 49, No. 9, September 2003 1269 



CROXTON, GENDRON, AND MAGNANTI 
MIP Models for Nonconvex Piecewise Linear Cost Problems 

Convex Combination Model 
The third formulation we examine is a modification 
of a formulation described in textbooks by Vajda 
(1964) and Dantzig (1963), and that appears as early 
as 1960 (Dantzig 1960). The original formulation was 
intended for continuous cost functions, so we mod- 

ify it to handle arbitrary (lower semicontinuous) dis- 
continuous functions. This formulation makes use 
of the fact that the cost of a load that lies in seg- 
ment s is a convex combination of the cost of the 
two endpoints, bs-1 and bs, of segment s. By defin- 

ing multipliers /•s 
and As as the weights on these 

two endpoints, we can write the objective function 
as g(x) = 

Es s(csbs-1 + f) + As(cSbS + fs). The y vari- 
ables having the same interpretation as in the multiple 
choice model, the constraints are 

x = E(LSbS-1+ AsbS), (8) 
s 

S + As = ys, (9) 

YS< 1, (10) 

A s, 
As > O, ys E {0, 1}. (11) 

3. Comparing the Three Models 
Given that all three of the previous models are valid 
and that researchers have used each of them in differ- 
ent application contexts, it is natural to ask if one is 
better than another. An important measure for assess- 

ing the quality of any MIP formulation is the strength 
of its LP relaxation. The following result demonstrates 
the equivalence of the LP relaxations of these three 
formulations. 

PROPOSITION 1. The LP relaxations of the incremental, 
multiple choice, and convex combination formulations are 
equivalent in the sense that any feasible solution of one LP 
relaxation corresponds to a feasible solution to the others 
with the same cost. 

PROOF. See the appendix. 
We can further characterize the LP relaxation of 

these formulations with the following result. 

PROPOSITION 2. The LP relaxations of the incremental, 
multiple choice, and convex combination formulations each 

approximate the cost function, g(x), with its lower convex 
envelope. 

PROOF. Because by Proposition 1 the three LP re- 
laxations are equivalent, we need only show that the 
LP relaxation of one of the formulations approximates 
the cost function with its lower convex envelope. We 
will use the convex combination formulation, show- 

ing that for any load X, the objective value of the LP 
relaxation obtained by optimally choosing the other 
variables is given by the lower convex envelope of the 
cost function. 

By relaxing the integrality restriction on the y vari- 
ables, we can combine Constraints (9) and (10) into 

s(/,S + As) < 1 and we can eliminate the y vari- 
ables. Therefore, a feasible solution is provided by 
any representation of x as a convex combination of 
the two S points, (bs, csbs + fs), with weight As, and 

(bs-1, csbs-1 + fs), with weight ,'s. As we vary the 
value of x, the cost-minimizing convex combination 
is given by the lower convex envelope of these two 
S points. Because g(x) is piecewise linear, the lower 
convex envelope of these two S points is the same as 
the lower convex envelope of g(x). O 

Another approach for establishing the convex enve- 

lope property would be to characterize the structure, 
especially for the extreme points, of the underlying LP 
feasible regions for the three models we have consid- 
ered. For a development of these results, see Croxton 
et al. (2002c). 

4. Relationship to Lagrangian 
Duality 

By associating a vector, y > 0, of Lagrangian mul- 

tipliers with the constraints Ax > b and letting 
gY(x) = g(x) - YAx, we can write the corresponding 
Lagrangian subproblem, LS(y), as follows: 

ZLS(y) 
= 

min {g(x): 0 < x < u}. The resulting Lagrangian dual 

problem, LD, is: ZLD = max~,, yb + ZLs(y). To estab- 
lish a relationship between Proposition 2 and classical 

Lagrangian duality theory, we will use the following 
theorem, due to Falk (1969). 

THEOREM 3. Let y* be an optimal solution to LD and 
x* an optimal solution to the corresponding Lagrangian 
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subproblem, LS(y*). Then, x* minimizes the lower con- 
vex envelope of the cost function defined over the bounded 
polyhedron {x: Ax > b, 0 < x < u}. 

To establish the desired relationship, we will show 
that ZLD equals the optimal value of the LP relaxation 
of any of the three formulations, say the multiple 
choice model (a similar development applies to the 
two other formulations). 

Like g(x), gy(x) is a separable sum of piecewise lin- 
ear functions, which we write as gY(x) = j g(xj). 
Consequently, we can formulate the Lagrangian sub- 

problem, LS(y), using the multiple choice model. 
Given the constraints of this model, we can assume 
that the bounding constraints 0 < x < u are redundant. 
The resulting problem decomposes into subproblems 
of the form: min 

gJ(xj), 
subject to the constraints of 

the multiple choice model. If, for notational simplicity, 
we drop the subscript j, each of these subproblems 
is defined by the objective function E, cS(y)zs + fSyS 
and the Constraints (4)-(7). In this expression, cs(y) 
is the slope of the segment s modified by the intro- 
duction of the Lagrangian multipliers. Note that the 
total load variable, x, does not appear in the objective 
function. We can derive its value from the values of 
the segment load variables, zs. Thus, we can remove 
Constraint (4). 

We could derive the same Lagrangian subprob- 
lem as follows: First, reformulate problem P using 
the multiple choice model; then, in the resulting 
MIP formulation, relax constraints Ax > b in a 

Lagrangian fashion. Clearly, the resulting Lagrangian 
dual is equivalent to LD, because the Lagrangian 
subproblems are identical. Classical Lagrangian dual- 

ity theory in MIP (Geoffrion 1974) implies that the 

Lagrangian dual and the LP relaxation of the MIP 
model have equal optimal values if, for any cost 
function Es cs(y)z~+ fSyS, the LP relaxation of the 

corresponding Lagrangian subproblem has an inte- 

gral optimal solution. Thus, ZLD equals the opti- 
mal value of the LP relaxation of the multiple 
choice model if we can show that when we min- 
imize some cost function s c(y)zs+ fsys over the 

polyhedron Q = {(y, z): bs-lys < 
zs < bSy, ,s ys 1, 

yS > 0}, the problem has an optimal solution with each 
yS E {0, 1}. 

This property is easy to establish. Suppose we min- 
imize some cost function Escs (y)zs + fsyS over the 

polyhedron Q. If cs(y) > 0, then zs = bs-lys in some 

optimal solution, while if cs(y) < 0, then zs = bsys in 
some optimal solution. Therefore, we can express each 
zs in terms of the ys variables, and eliminate the zS 
variables and the constraints bs-lys < zs < bsys. The 

resulting problem has a linear objective function and 
the single constraint Es yS < 1 in the nonnegative y 
variables. Because the problem has a single constraint, 
it has an optimal solution with at most one yS = 1 
and all other y variables at value zero. Therefore, for 
some optimal solution the value of each yS is 0 or 1. 

This discussion shows how Lagrangian duality 
results imply the convex envelope property of the 
three classical models for optimization problems 
with nonconvex piecewise linear costs. Conversely, it 
shows that the convex envelope property of the classi- 
cal models presages the Lagrangian duality result and 
further demonstrates the strong relationship between 

Lagrangian duality and linear programming. 

5. Conclusion 
We have shown that the LP relaxations of three text- 
book MIP models for nonconvex piecewise linear 
minimization problems defined over bounded poly- 
hedra are equivalent, each approximating the cost 
function with its lower convex envelope. We have 
also discussed the relationship between these results 
and classical Lagrangian duality theory. 

The equivalence between the three LP relaxations 
and the fact that they all approximate the lower con- 
vex envelope of the cost function has several implica- 
tions. First, it shows that from the perspective of LP 
relaxations, choosing among the three models is irrel- 
evant. We might prefer one model to another for other 
reasons (for example, their use within specific algo- 
rithms), but they all provide the same LP relaxations 
and bounds. 

As an algorithmic implication, suppose we use a 

branch-and-bound algorithm to solve a nonconvex 
piecewise linear cost minimization problem with a 
feasible region defined by a bounded polyhedron. 
There are two obvious relaxations for computing 
the lower bounds at the nodes of the enumeration 
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tree: either the lower convex envelope or the LP 
relaxation of a MIP formulation of the problem. Falk 
and Soland (1969) studied the first approach, but 
to the best of our knowledge, no one has ever rec- 

ognized the fundamental relationship between their 
method and an LP-based branch-and-bound method: 
both compute the same lower bounds. 

Appendix. Proof of Proposition 1 
We establish this result by providing translations between feasible 
solutions of (1) the multiple choice and convex combination formu- 
lations and (2) the incremental and multiple choice formulations. 
We show that these translations give feasible solutions with the 
same cost. We denote the LP relaxations of the incremental, multi- 

ple choice, and convex combination formulations as LP(I), LP(M), 
and LP(C), respectively. 

Multiple Choice -- Convex Combination 
Consider a feasible solution (x, y, z) to LP(M). Because bs-lys < zs < 
bsys, for some value of 0 < as < 1, zs = asbs-ly' + (1 - as)bsys. Let 

AWs = aSys and As = (1 - as)ys. Then ps + As = ys and zs = . sbs-' + Asbs. 
Because x = E, zs, x = Es(.Asbs-1 + Asbs). Therefore, (x, y, A, A) is 
feasible for LP(C). The cost of this solution is Es As(csbs-1 + fs) + 
As(csbs + fs) = Es cS(.'sbs-1 + Ab') + fs(bs 

s + As) = Es CSzS + fSyS, 
which equals the cost of (x, y, z), the solution to LP(M). 

Convex Combination --+ Multiple Choice 
Consider a feasible solution (x, y, /, A) to LP(C). Define zs= 
Lsbs-1 + Asbs. The conditions bs-1 < bs and ps + As = ys imply that 

bs-lys < zs < bSys. Therefore, (x, y, z) is feasible for LP(M). As shown 

previously, the cost of this solution is the same as the cost of 

(x, y, A, A). 

Incremental -- Multiple Choice 
Consider a feasible solution (x, y, z) to LP(I). Let ws = zs + bs-1ys - 
bsys+1 and vs = y - ys+l. If we add b-lys - bSys+' to each of the 
terms in (2), these inequalities become bs-1 v < wS < bsvs. The 

inequalities (2) imply that ys+1 < ys, and thus vs > 0. In addition, 

Es vS = yl _ yS+1 = yl < 1 (recall that yS+l = 0). Finally, Es ws = 

Ts zs + bOy1 - bSys+1 = Es zs = x. Therefore, (x, v, w) is a feasible 
solution to LP(M). The cost of this solution is Es csws +fSvs = 

Es cS(zS + bs-lys - bSys+') +f S(yS yS+1) = cs cSzS + s (fS +csbs-1)Ys - 
Es(fs + csbs)ys+' = S csZs + [(fs + csbs-1) - (fs-'1 + cs-bs-)ly = 

E, cszS + f'Sys, 
which equals the cost of (x, y, z). 

Multiple Choice - Incremental 
Consider a feasible solution (x, y, z) to LP(M). Let ws = zS + (bs - 

bs-1)(>ts+1 y') - bs-lys and vs = 
>j,>s y'. These definitions imply that 

zs = ws + bS-1vs - bs's+1 and yS = v - vs+~'. Also note that 0 < vs < 
1. Through substitution, the inequalities (5) imply (bs - bs-1)v's+1 
ws < (bs - bs-1)vs. In addition, >s ws = Cs zs = x. Therefore, (x, v, w) 

is a feasible solution to LP(I). Moreover, using the same equations 
as in the translation from a solution of LP(I) to a solution of LP(M), 
it is easy to show that the cost of (x, v, w) is the same as the cost 
of (x, y, z), the solution to LP(M). 
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